首页> 外文OA文献 >Deep learning for detecting multiple space-time action tubes in videos
【2h】

Deep learning for detecting multiple space-time action tubes in videos

机译:深度学习可检测视频中的多个时空动作管

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we propose an approach to the spatiotemporal localisation (detection)and classification of multiple concurrent actions within temporally untrimmed videos.Our framework is composed of three stages. In stage 1, appearance and motion detectionnetworks are employed to localise and score actions from colour images and opticalflow. In stage 2, the appearance network detections are boosted by combining them withthe motion detection scores, in proportion to their respective spatial overlap. In stage 3,sequences of detection boxes most likely to be associated with a single action instance,called action tubes, are constructed by solving two energy maximisation problems viadynamic programming. While in the first pass, action paths spanning the whole videoare built by linking detection boxes over time using their class-specific scores and theirspatial overlap, in the second pass, temporal trimming is performed by ensuring labelconsistency for all constituting detection boxes. We demonstrate the performance of ouralgorithm on the challenging UCF101, J-HMDB-21 and LIRIS-HARL datasets, achievingnew state-of-the-art results across the board and significantly increasing detectionspeed at test time.
机译:在这项工作中,我们提出了一种对时空未修剪视频中的多个并发动作进行时空定位(检测)和分类的方法。我们的框架由三个阶段组成。在阶段1中,使用外观和运动检测网络对彩色图像和光流中的动作进行定位和评分。在阶段2中,通过将外观网络检测与运动检测得分结合起来,以与它们各自的空间重叠成比例的方式来增强外观网络检测。在阶段3中,通过动态编程解决两个能量最大化问题,构造了最可能与单个动作实例(称为动作管)相关联的检测盒序列。在第一遍中,通过使用特定于类别的得分及其空间重叠将检测框随时间链接起来,从而构建跨越整个视频的动作路径,而在第二遍中,通过确保所有构成的检测框的标签一致性来执行时间修剪。我们证明了我们的算法在具有挑战性的UCF101,J-HMDB-21和LIRIS-HARL数据集上的性能,全面实现了最新的结果,并在测试时显着提高了检测速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号